skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ghosh, Aritrik"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This demonstration presents LiTEfoot, an ultra-low power localization system leveraging ambient cellular signals. To address the limitations of traditional GPS-based tracking systems in terms of power consumption and latency, LiTEfoot employs a non-linear transformation of the cellular spectrum to achieve efficient self-localization. Our design uses a simple envelope detector to realize spectrum folding, enabling the identification of multiple active base stations. 
    more » « less
    Free, publicly-accessible full text available December 4, 2025
  2. In this paper, we introduce a low-power wide-area cellular localization system, called LiTEfoot. The core architecture of the radio carefully applies non-linear transform of the entire cellular spectrum to obtain a systematic superimposition of the synchronization signals at the baseband. The system develops methods to simultaneously identify all the base stations that are active at any cellular band from the transformed signal. The radio front end uses a simple envelop detector to realize the non-linear transformation. We build on this low-power radio to implement a self-localization system leveraging ambient 4G-LTE signals. We show that the core system can also be extended to other cellular technologies like 5G-NR and NB-IoT. The prototype achieves a median localization error of 22 meters in urban areas and 50 meters in rural areas. It can sense a 3GHz wideband LTE spectrum in 10ms using non-linear intermodulation while consuming 0.9 mJ of energy for a PCB-based implementation and 40 𝜇J for CMOS simulation. In other words, LiTEfoot tags can last for 11 years on a coin cell while continuously estimating location every 5 seconds. We believe that LiTEfoot will have widespread implications in city-scale asset tracking and other location-based services. The radio architecture can be useful beyond low-power self-localization and can find application in synchronization and communication on battery-less platforms. 
    more » « less
    Free, publicly-accessible full text available November 4, 2025
  3. This paper presents LiTEfoot, an ultra-low power, wide-area localization system leveraging ambient cellular signals to address the limitations of traditional self-localization systems in terms of power consumption and latency. LiTEfoot uses a non-linear transformation of the cellular synchronization signal to efficiently achieve self-localization by systematically superimposing signals at the baseband. A simple envelope detector is used to realize this non-linear transformation, enabling the identification of multiple active base stations across any cellular band. The system is designed to operate with low power, consuming only 40 𝜇Joules of energy per localization update, achieving a median localization error of 22 meters in urban areas. 
    more » « less
    Free, publicly-accessible full text available November 4, 2025